Идеальные растворы. Закон Рауля и следствия из него

Существует несколько классификаций растворов. С точки зрения термодинамики целесообразно различать растворы идеальные и неидеальные или реальные . В идеальных растворах внутренняя энергия каждого компонента не зависит от концентрации, и молярный объем не изменяется при растворении. Компоненты при этом смешиваются как идеальные газы, и увеличение энтропии можно рассчитать по уравнениям, характерным для идеальных газов. Здесь сил взаимодействия между частицами нет, и вещества смешиваются без выделения или поглощения теплоты.

При исследовании растворов широко пользуются методом моделей. Простейшей моделью является идеальный раствор. Идеальные растворы делят обычно на две группы: разбавленные (более точно бесконечно разбавленные) и совершенные.

Образование идеального раствора не сопровождается изменением объема, тепловым эффектом, химическим взаимодействием. Такие растворы образуются в результате простого физического смешения

(ΔН см = 0; ΔV см = 0). Такие растворы получаются смешиванием неполярных жидкостей, характеризующихся близкими по силе молекулярными полями. В таких смесях отсутствуют явления сольватации, а отсюда нет и теплового эффекта растворения, нет и концентрации системы. Объем раствора равен сумме объемов смешиваемых компонентов. Это и есть идеальные или совершенные растворы.

Роль их в теории растворов аналогична роли идеальных газов (потому их и называют идеальными растворами).

Идеальные растворы довольно распространены. Пример: смешивание изомеров углеводорода (октаны и др.). Бензин, керосин, смесь бензола и толуола –идеальные растворы, представляют собой смесь различных углеводородов (жидких). Идеальные растворы имеют характер простых молекулярных смесей. К ним подходит «физическая» теория растворов. Физическая теория растворов предложена Вант-Гоффом и Аррениусом в 19 в. Согласно этой теории растворитель рассматривается как среда, в которой при растворении вещества его молекулы равномерно размещаются по всему объему раствора, межмолекулярные взаимодействия отсутствуют.

Законы Рауля . Важнейшей характеристикой вещества, находящегося в жидком состоянии или твердом является давление насыщенного пара, это давление – константа вещества, определяющая равновесие жидкость ó пар, твердое веществоó пар. Само равновесие достигается, когда процессы испарения компенсируется процессами конденсации. При нагревании давление пара возрастает.

Для разбавленных растворов относительное понижение давления пара растворителя (А) численно равно мольной доле растворенного вещества (В) (первый закон Рауля).

Где Р А 0 - давление пара чистого растворителя; Р А – давление пара растворителя над раствором; Х А – мольная доля растворителя; Х В – мольная доля растворенного вещества.

Таким образом, для разбавленных растворов давление пара растворителя пропорционально его мольной доле в растворе.

Из закона Рауля возникает два следствия . Согласно одному из них температура кипения раствора выше температуры кипения растворителя. Это обусловлено тем, что давление насыщенного пара растворителя над раствором становится равным атмосферному давлению (условие кипения жидкости) при более высокой температуре, чем в случае чистого растворителя. Повышение температуры кипения ΔТ кип пропорционально моляльности раствора: с m . ΔТ кип = К э с m где К э – эбулиоскопическая постоянная растворителя

Согласно второму следствию из закона Рауля температура замерзания (кристаллизации) раствора ниже температуры замерзания (кристаллизации) чистого растворителя . Это обусловлено более низким давлением пара растворителя над раствором, чем над растворителем. Понижение температуры замерзания (кристаллизации) ΔТ зам пропорционально моляльности раствора: ΔТ зам = К к с m где К к - криоскопическая постоянная раствора.

Диаграмма состояния представляет собой графическое изображение зависимости между различными величинами, характеризующими состояние системы. Для однокомпонентных систем обычно используют диаграммы состояния, показывающие зависимость между давлением и температурой. Они называютсяфазовыми диаграммами состояния . Диаграмма показывает те состояния воды, которые термодинамически устойчивы при определенных значениях температуры и давления. Она состоит из трех кривых, разграничивающих все возможные температуры и давления на три области, отвечающие льду, жидкости и пару. Все три кривые пересекаются одной точке О. координаты этой точки – это единственная пара значений температуры и давления, при которых в равновесии могут находиться все три фазы: лед, жидкая вода и пар. Она носит название тройной точки.

Кривая плавления исследована до весьма высоких температур. Кривая кипения оканчивается в критической точке. При температуре, отвечающей этой точке, - критической температуре – величины, характеризующие физические свойства жидкости и пара, становятся одинаковыми, так, что различие между жидким и парообразным сосоянием исчезает. Одной из особенностей воды, отличающих ее от других веществ, является понижение температуры плавления льда с ростом давления. Это обстоятельство отражается на диаграмме. Кривая плавления на диаграмме идет вверх влево, тогда как почти для всех других веществ она идет вверх вправо. Температура замерзания раствора ниже температуры замерзания воды, а температура кипения раствора выше температуры кипения воды.

Самопроизвольный переход растворителя через полупроницаемую мембрану, разделяющую раствор и растворитель или два раствора с различной концентрацией растворенного вещества, называется осмосом.

Осмос обусловлен диффузией молекул растворителя через полупроницаемую перегородку, которая пропускает только молекулы растворителя. Молекулы растворителя диффундируют из растворителя в раствор или из менее концентрированного раствора в более концентрированный, поэтому концентрированный раствор разбавляется (химический потенциал растворителя в растворе меньше химического потенциала чистого растворителя), при этом увеличивается и высота его столба. Количественно осмос характеризуется осмотическим давлением, равным силе, приходящейся на единицу площади поверхности, и заставляющей молекулы растворителя проникать через полупроницаемую перегородку. Оно равно давлению столба раствора в осмометре высотой h. При равновесии внешнее давление уравновешивает осмотическое давление. В этом случае скорости прямого и обратного переходов молекул через полупроницаемую перегородку становится одинаковыми. Если внешнее давление, приложенное к более концентрированному раствору, выше осмотического p, т.е. р>p, то скорость перехода молекул растворителя из концентрированного раствора будет больше, и растворитель будет переходить в разбавленный раствор (или чистый растворитель). Этот процесс, называемый обратным осмосом , используется для природных и сточных вод, для получения питьевой воды из морской. Осмотическое давление возрастает с увеличением концентрации растворенного вещества и температуры. Вант-Гофф предположил, что для осмотического давления можно применить уравнение состояния идеального газа: pV = nRТ или p = (n⁄ V) RТ откуда p = с RТ, где p - осмотическое давление (кПа), с – молярная концентрация раствора. Осмотическое давление прямо пропорционально молярной концентрации растворенного вещества и температуре. Осмос играет очень важную роль в биологических процессах, обеспечивая поступление воды в клетки и другие структуры. Растворы с одинаковым осмотическим давлением называются изотоническими . Если осмотическое давление выше внутриклеточного, то оно называется гипертоническим, если ниже внутриклеточного - гипотоническим.

23.Растворы электролитов. Теория электролитической диссоциации Аррениуса: степень диссоциации, константа диссоциации. Факторы, влияющие на них. Закон разбавления Оствальда.

По способности веществ распадаться или не распадаться в расплаве или растворе на катионы и анионы различают электролиты и неэлектролиты.

Электролиты – вещества, которые подвергаются электролитической диссоциации, и вследствие чего их расплавы или растворы проводят электрический ток.

К электролитам принадлежат все соли, а также кислотные, основные и амфотерные гидроксиды.

Раствор электролита представляет собой смесь молекул растворителя и сольватированных (ионы растворенного вещества, окруженные соответственно ориентированными диполями растворителя) молекул и ионов растворенного вещества. Относительное количество молекул, распавшихся на ионы, характеризующее степень диссоциации электролита α , зависит от природы растворителя, природы и концентрации электролита, температуры, давления и наличия других электролитов в растворе.

Процесс распада полярного вещества в растворе на ионы называют электролитической диссоциацией (ионного – ионизацией). По способности к электролитической диссоциации электролиты обычно подразделяют на сильные и слабые. К сильным электролитам обычно относят вещества, которые в растворе практически полностью диссоциированы на ионы. Слабыми электролитами считают вещества, степень диссоциации, которых невелика. Понятие степень диссоциации электролита α как величины, равной отношению числа распавшихся (диссоциированных) молекул N дисс к общему числу молекул N 0 электролита, α = N дисс ⁄ N о было введено Аррениусом – создателем первой количественной теории растворов электролитов. Теория электролитической диссоциации и основанная на ней классификация кислот и оснований в полной мере применимы лишь к водным растворам .

Процесс электролитической диссоциации возникающий в результате сольватации, обратим, т.е. наряду с равпадом молекул растворенного вещества происходит их образование из ионов:

К m А n D mК Z1+ + nА Z2- где К m А n – молекула электролита; К Z1+ - катион; А Z2- - анион; Z 1 и Z 2 - заряд аниона и катиона соответственно; n и m – стехиометрические коэффициенты. Равновесие между ионами и молекулами электролита подчиняется закону действия масс. Поэтому важной характеристикой процесса диссоциации является константа диссоциации (константа ионизации) К d (С) , вычисленная по равновесным концентрациям молекул и ионов: К d (С) = [К Z1+ ] m [А Z2- ] n ⁄[К m А n ] , где [К Z1+ ], [А Z2- ] –равновесные молярные концентрации катионов и анионов соответственно; [К m А n ] - равновесная молярная концентрация недиссоциированных молекул электролита.

Константу равновесия процесса диссоциации принято обозначать К а в случае слабых кислот и К b для слабых оснований.

Пример диссоциации слабого основания (гидроксид аммония) NН 4 ОН D NН 4 + + ОН -

К b = [ОН - ] ⁄ = 1,8 ×10 -5

Многоосновные кислоты и многоосновные основания диссоциируют ступенчато.

Константа диссоциации характеризует процесс диссоциации данного электролита в данном растворителе, но не зависит от концентрации электролита и при постоянной температуре К d (С) =соnst. Очевидно, что степень диссоциации α тем больше, чем ниже концентрация, т.е. чем сильнее разбавлен раствор.

В состоянии равновесия концентрации катионов К Z+ и анионов А Z- будут равны [К Z+ ] = [А Z- ] = α С, а концентрация недиссоциированных молекул [КА] = (С – αС) = С (1- α) подставляя эти выражения в уравнение для константы диссоциации получим:

К d (С) = α 2 × С

1- α - это выражение описывает закон разбавления (разведения) Оствальда для слабых электролитов . В случае когда степень диссоциации электролита α<<1, что имеет место при С ⁄К d (С) ≥100, величиной α по сравнению с 1 можно пренебречь и закон разбавления Оствальда записать в упрощенном варианте К d (С) ≈ α 2 С.

Факторы, влияющие на смещение равновесия

1. Давление (характерно для газов). Увеличение давления смещает равновесие в сторону реакции, идущей с уменьшением числа молекул газа, т.е. в сторону понижения давления. Например, в реакции 2SO 2 + O 2 ↔ 2SO 3 в левой части уравнения 3 молекулы газа, а в правой – 2, поэтому при повышении давления равновесие смещается вправо.

2. Температура. Увеличение температуры смещает положение равновесия в сторону эндотермической реакции, понижение – в сторону экзотермической реакции. Например, в равновесной системе N 2 + 3H 2 ↔ 2NH 3 , ∆H 0 = - 92 кДж повышение температуры приводит к смещению равновесия в сторону обратной (эндотермической) реакции, понижение – в сторону прямой (экзотермической) реакции.

3. Концентрация. Увеличение концентрации исходных веществ и удаление продуктов из сферы реакции смещает равновесие в сторону прямой реакции. Уменьшение концентрации исходных веществ и увеличение концентрации продуктов реакции смещает равновесие в сторону обратной реакции. Например, в реакции 2NO + O 2 ↔ 2NO 2 увеличение концентрации NO и O 2 или уменьшении концентрации NO 2 приводит к смещению равновесия в сторону прямой реакции. Увеличение концентрации NO 2 – в сторону обратной реакции.

Равновесие процесса перехода вещества из одной фазы в другую без изменения химического состава называется фазовым равновесием . Например: Твердое вещество Жидкость

Жидкость Пар

Для фазового равновесия также соблюдается принцип Ле Шателье. Соответственно при повышении температуры равновесие смещается в сторону эндотермического процесса, например, плавления или испарения. С увеличением давления равновесие сдвигается в сторону процессов, при которых газ или пар превращается в жидкое или твердое состояние.

К наиболее общим законам гетерогенного равновесия относится правило фаз , согласно которому число степеней свободы С, фаз Ф, независимых компонентов К и внешних условий n, влияющих на равновесие, связано соотношением

С + Ф = К + n

Фаза – это часть системы, однородная во всех ее точках по химическому составу и свойствам и отделенная от всех других фаз системы поверхностью раздела. Компонент – это химически однородная составная часть вещества, которая может быть выведена из системы. В случае фазового равновесия число независимых компонентов равно общему числу компонентов, при протекании химических реакций - общему числу компонентов за вычетом числа химических реакций, связывающих эти компоненты. Число степеней свободы – это число внешних условий, которые можно менять в определенных пределах без изменения числа и вида фаз.



Лекция № 8.ОБЩИЕ СВОЙСТВА РАСТВОРОВ

Раствор это гомогенная система, состоящая из двух и более компонентов, относительные количества которых могут изменяться в широких пределах. Вещество, взятое в избытке и служащее средой, в которой идет растворение, называется растворителем . Вещество, которое растворяется, называется растворяемым веществом .

Растворимость. Способность одного вещества растворяться в другом называется растворимостью . Количественной характеристикой растворимости является коэффициент растворимости , который выражается массой безводного вещества, растворяющегося при данных условиях в 100 г растворителя с образованием насыщенного раствора.

Растворимость зависит от природы растворяемого вещества и растворителя, температуры и давления (для газов):

1. Природа растворяемого вещества.

Кристаллические вещества подразделяются на хорошо растворимые (более 1,0 г на 100 г воды); малорастворимые (0,1 г - 1,0 г на 100 г воды); практически нерастворимые (менее 0,1 г на 100 г воды). Если газ химически взаимодействуют с водой, его растворимость велика (HCl, NH 3 , CO 2), если не взаимодействует – растворимость незначительна (O 2 , H 2).

2. Природа растворителя

При образовании раствора связи между частицами каждого из компонентов заменяются связями между частицами разных компонентов. Чтобы новые связи могли образоваться, компоненты раствора должны иметь однотипные связи, т.е. быть одной природы. Поэтому ионные вещества хорошо растворяются в полярных растворителях и плохо в неполярных, а молекулярные вещества – наоборот.

3.Температура

Если ∆Н растворения < 0, то при увеличении температуры равновесие смещается влево и растворимость твердого вещества в воде уменьшается. Если ∆Н раств > 0, то при увеличении температуры равновесие смещается вправо и растворимость увеличивается.

Растворимость газов в воде – процесс экзотермический, поэтому с повышением температуры растворимость газов уменьшается, а с понижением – увеличивается.

4. Давление

С повышением давления растворимость газов в жидкостях увеличивается, а с понижением уменьшается.

Способы выражения состава растворов. Важной характеристикой любого раствора является его состав, который определяется количеством растворенного вещества и растворителя. Отношение количества или массы вещества, содержащегося в системе, к объему или массе этой системы называется концентрацией .

Молярная концентрация вещества или молярность (с В или М) – отношение количества растворенного вещества к объему раствора:

где m B – масса вещества, г; М В –молярная масса вещества, г/моль; V – объем раствора, л.

Молярная концентрация эквивалентов вещества или нормальность ((В) или н.) – отношение количества эквивалентов растворенного вещества к объему раствора:

, моль/л,

где m B – масса вещества, г; М э(В) – молярная масса эквивалентов вещества, г/моль; V – объем раствора, л.

Моляльная концентрация вещества или моляльность (с m (В)) – отношение количества растворенного вещества к массе растворителя:

, моль/кг,

где m B – масса растворенного вещества, г; m S – масса растворителя, г; М В – молярная масса растворенного вещества, г/моль.

Массовая доля вещества (ω) – отношение массы растворенного вещества к массе раствора. Массовую долю выражают в долях или процентах:

,

где m B – масса растворенного вещества, г; m – масса раствора, г.

Молярная (мольная) доля вещества (х В) – отношение количества растворенного вещества (или растворителя) к сумме количеств всех веществ, содержащихся в растворе:

,

где х B – молярная доля растворенного вещества, n B – количество растворенного вещества; n S – количество растворителя.

,

где х S – молярная доля растворителя, n B и n S – количества растворенного вещества и растворителя.

Общие свойства растворов. Разбавленные растворы проявляют ряд общих свойств: осмотическое давление, температуры замерзания и кипения. Эти свойства рассматривают при допущении, что молекулы растворенного вещества и растворителя не взаимодействуют друг с другом (растворы неэлектролитов).

Односторонняя диффузия молекул растворителя через полупроницаемую перегородку называется осмосом . Сила, обусловливающая осмос, называется осмотическим давлением . Величина осмотического давления зависит от концентрации раствора и его температуры, но не зависит ни от природы растворенного вещества, ни от природы растворителя. Зависимость осмотического давления от температуры и концентрации раствора выражается законом Вант-Гоффа : π = c B RT,

где π – осмотическое давление раствора, кПа; с В – его молярная концентрация, моль/л; R – универсальная газовая постоянная; T – абсолютная температура раствора.

При данной температуре давление насыщенного пара над жидкостью – величина постоянная. При растворении в жидкости какого-либо вещества давление насыщенного пара над жидкостью понижается. В разбавленных растворах неэлектролитов при постоянной температуре относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества (закон Рауля ):

,

где р 0 – давление насыщенного пара над чистым растворителем; р – давление пара над раствором; n B – количество растворенного вещества; n S – количество растворителя.

Любая жидкость закипает, когда давление ее пара становится равным атмосферному давлению. Так как, давление пара над раствором ниже давления пара над растворителем, то для того, чтобы раствор закипел, его надо нагреть до более высокой температуры, чем растворитель.

Замерзает раствор тогда, когда давление насыщенного пара его становится равным давлению насыщенного пара твердого растворителя, следовательно для замерзания раствора нужна более низкая температура, чем для растворителя.

Повышение температуры кипения (ΔТ кип) и понижение температуры замерзания (∆Т зам) раствора прямо пропорционально моляльной концентрации растворенного вещества (следствие закона Рауля ):

∆Т зам = К Т ∙ с m (B); ∆Т кип = Э Т ∙ c m (B),

где ∆Т зам – понижение температуры замерзания; ∆Т кип – повышение температуры кипения; К Т – криоскопическая константа; Э Т – эбулиоскопическая константа; c m (B) – моляльная концентрация раствора.

Лекция № 9. РЕАКЦИИ В РАСТВОРАХ ЭЛЕКТРОЛИТОВ

Электролиты – это вещества, растворы и расплавы которых проводят электрический ток.

При растворении электролитов в воде происходит их распад на ионы. Распад молекул вещества на ионы под действием полярных молекул растворителя называется электролитической диссоциацией . Ионы – это заряженные частицы. Бывают двух типов: положительно заряженные – катионы (Na + , Al 3+ , NH 4 +) и отрицательно заряженные – анионы (Cl ‾ , SO 4 2‾ , PO 4 3‾). Под действием электрического тока катионы движутся к отрицательно заряженному электроду (катоду), анионы – к положительно заряженному электроду (аноду).

К электролитам относятся растворы кислот, солей и щелочей.

Кислоты – это электролиты, диссоциирующие в растворах с образованием катионов водорода: HCN= H + + CN - .

Основания – электролиты, диссоциирующие в растворах с образованием гидроксид- ионов: NH 4 OH= NH 4 + + OH - .

Существуют электролиты, которые могут диссоциировать по типу кислоты и по типу основания, такие электролиты называются амфотерными , к ним относятся гидроксиды амфотерных элементов, а также гидроксиды металлов, находящихся в промежуточной степени окисления, например: Al(OH) 3 , Zn(OH) 2 , Cr(OH) 3 и многие другие. Диссоциацию растворенной части амфотерного гидроксида по обоим типам можно представить следующей схемой: H + + RO - = ROH = R + + OH – . В насыщенном водном растворе амфотерного гидроксида ионы H + , RO - , R + , OH - находятся в состоянии равновесия, поэтому амфотерные гидроксиды взаимодействуют и с кислотами и с основаниями. При добавлении кислоты равновесие смещается в сторону диссоциации по типу основания, при добавлении основания – в сторону диссоциации по типу кислоты.

Соли – электролиты, которые при растворении в воде диссоциируют, отщепляя положительные ионы, отличные от ионов водорода и отрицательные, отличные от гидроксид-ионов.

Степень диссоциации. Для количественной характеристики процесса диссоциации введено понятие степень диссоциации. Степенью диссоциации (α) называется отношение числа молекул, распавшихся на ионы (n), к общему числу растворенных молекул (N) . Выражается в долях единицы или в %.

α = n / N 0 < α < 1 (или 0 < α < 100%)

Степень диссоциации зависит от природы электролита, его концентрации и температуры. По своей природе все электролиты делятся на сильные и слабые. Степень диссоциации сильных электролитов α > 30%, слабых электролитов – α < 3%.

У сильных электролитов в растворе диссоциируют на ионы практически все молекулы, у слабых – лишь часть молекул. К сильным электролитам относятся почти все соли, основания щелочных и щелочноземельных металлов, а из важнейших кислот: HClO 4 , H 2 SO 4 , HNO 3 , HCl, HBr, HI, HMnO 4 . К слабым электролитам относятся почти все органические кислоты, (например, CH 3 COOH), неорганические соединения: H 2 CO 3 , H 2 SO 3 , H 2 SiO 3 , HCN, HNO 2 , HF, NH 4 OH, H 2 O.

Константа диссоциации. В растворах слабых электролитов процесс диссоциации протекает обратимо и к нему может быть применен закон действия масс. Так, для процесса диссоциации слабой уксусной кислоты CH 3 COOH ↔ CH 3 COO - + H + константа равновесия процесса диссоциации имеет вид:

Константа равновесия, отвечающая диссоциации слабого электролита, называется константой диссоциации (К д) . Константа диссоциации указывает на прочность молекулы в данном растворе. Чем меньше К д, тем слабее электролит и тем, следовательно, устойчивее его молекулы. Например, борная кислота Н 3 ВО 3 , К д которой 5,8∙10 -10 , более слабый электролит, чем уксусная, К д которой равна 1,8∙10 -5 .

Константа и степень диссоциации связаны соотношением (закон разбавления Оствальда ):

Если α значительно меньше единицы, то можно принять, что 1 – α ≈ 1. Тогда выражение закона разбавления упрощается:

К = α 2 ∙ с В, откуда α =

Последнее соотношение показывает, что при уменьшении концентрации электролита с В (т.е. с разбавлением раствора) степень диссоциации α увеличивается.

Реакции в растворах электролитов протекают между ионами и идут необратимо, если в результате реакции образуются осадки, газы и слабые электролиты. Обычно такие реакции изображаются при помощи ионно-молекулярных уравнений. Осадки, газы и слабые электролиты пишутся в виде молекул, хорошо растворимые сильные электролиты – в виде ионов.

Рассмотрим типичные варианты реакций в растворах электролитов:

а) 3АgNO 3 + FeCl 3 = Fe(NO 3) 3 + 3AgCl – молекулярное уравнение

3Ag + + 3NO 3 - + Fe 3+ + 3NO 3 - + 3AgCl – полное ионное уравнение

Ag + + Cl - = AgCl – сокращенное ионное уравнение

б) Na 2 CO 3 + H 2 SO 4 = Na 2 SO 4 + H 2 O + CO 2

2Na + + CO 3 2- + 2H + + SO 4 - = 2Na + + SO 4 2- + H 2 O + CO 2

2H + + CO 3 2- = H 2 O + CO 2 .

в) HCl + NaOH = NaCl + H 2 O

H + + Cl - + Na + + OH - = N a + + Cl - + H 2 O

H + + ОH - = H 2 O

При составлении ионно-молекулярных уравнений следует помнить, что сумма электрических зарядов в левой части должна быть равна сумме электрических зарядов в правой части уравнения. Одинаковые ионы из обеих частей уравнения исключаются.

Лекция №10. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ

Реакции, в которых происходит изменение степеней окисления атомов элементов, входящих в состав реагирующих соединений, называются окислительно-восстановительными.

Степень окисления (С.О.) – это заряд атома в соединении, вычисленный, исходя из предположения, что соединение состоит из ионов . Определение степени окисления проводят, используя следующие положения:

1. Степень окисления. элемента в простом веществе, например, в Zn, H 2 , Вг 2 , S, O 2 , равна нулю.

2. Cтепень окисления кислорода в соединениях обычно равна –2. Исключения составляют пероксиды H 2 +1 O 2 –1 , Na 2 +1 O 2 –1 и О +2 F 2 .

3. Степень окисления водорода в большинстве соединений равна +1, за исключением солеобразных гидридов, например, Na +1 H -1 .

4. Постоянную степень окисления имеют щелочные металлы (+1); щелочноземельные металлы, бериллий и магний (+2); фтор (–1).

5. Алгебраическая сумма степеней окисления элементов в нейтральной молекуле равна нулю, в сложном ионе – заряду иона.

В качестве примера рассчитаем степень окисления хрома в соединении К 2 Cr 2 O 7 . Сначала поставим степень окисления над теми элементами, для которых она известна. В нашем примере постоянную степень окисления имеют калий (+1) и кислород (-2). Степень окисления хрома обозначим через х . Далее составляем алгебраическое уравнение. Для этого индекс при каждом элементе умножаем на степень окисления этого элемента, все складываем и приравниваем правую часть нулю:

К 2 +1 Сr 2 х O 7 –2 2∙(+1)+ 2x + 7 (–2) = 0 x = + 6

Таким образом, степень окисления хрома в К 2 Cr 2 O 7 равна +6. Чтобы определить степень окисления элемента в анионе, например азота в анионе (NO 2) ‾ , поступаем точно также, только правую часть приравниваем заряду иона, в нашем случае -1

(N х O 2 ‾2) ‾ x + 2 (–2) = –1 x = + 3

В окислительно-восстановительных реакциях электроны от одних атомов, молекул или ионов переходят к другим. Окисление процесс отдачи электронов атомом, молекулой или ионом, сопровождающийся повышением степени окисления . Восстановление процесс присоединения электронов, сопровождающийся понижением степени окисления.

Окисление и восстановление – взаимосвязанные процессы, протекающие одновременно.

§ 1. Растворы (определение). Концентрация.

Растворами называются фазы, состав которых можно изменять непрерывно (в известных пределах), т. е. фазы переменного состава 2 . Таким образом, растворы – это однородные смеси молекул (в частных случаях – также атомов, ионов) двух или более веществ, между которыми имеются физические и, нередко, химические взаимодействия.

Ассоциация молекул какого-либо соединения и сольватация (соединение молекул растворенного вещества и молекул растворителя в непрочные комплексы), не ведущие к образованию особенно больших ассоциатов, не нарушают однородности раствора.

Иной характер имеют смеси, в которых частицы одной из составных частей смеси состоят из большого числа молекул и являются, как правило, микрокристаллами со сложной структурой поверхностного слоя. Такие смеси неоднородны, хотя на первый взгляд и могут казаться однородными. Они микрогетерогенны. Эти смеси называются дисперсными системами. Между обоими классами смесей возможны непрерывные переходы. Впрочем, подробному обсуждению свойств дисперсных систем посвящена вторая часть нашего курса.

Растворы, как правило, термодинамически устойчивы, и их свойства не зависят от предыдущей истории, тогда как дисперсные системы очень часто неустойчивы и обнаруживают тенденцию к самопроизвольному изменению.

Простейшие составные части раствора, которые могут быть выделены в чистом виде и смешением которых можно получить растворы любого возможного состава, будем называть компонентами раствора.

Во многих случаях деление их на растворитель и растворенные вещества условно. Обычно компонент, находящийся в избытке по сравнению с другими, называют растворителем, остальные же компоненты – растворенными веществами. Так, можно иметь растворы спирта или серной кислоты в воде и растворы воды в спирте или в серной кислоте. Если одним из компонентов раствора является жидкость, а другими – газы или твердые вещества, то растворителем считают жидкость.

Основными параметрами состояния раствора, наряду с давлением и температурой, являются концентрации, т. е. относительные количества компонентов в растворе. Концентрации могут быть выражены разными способами в различных единицах: количества компонентов могут быть отнесены к известному количеству раствора или растворителя, количества растворенных веществ могут быть выражены в весовых единицах и в молях; количество растворителя или раствора – в весовых единицах, в молях и в объемных единицах.

Рассмотрим некоторые наиболее употребительные способы и единицы измерения концентраций растворов. Обозначим при этом массы компонентов, выраженные в граммах («весовые» количества), через m 1 , m 2, ..., m i , а сумму масс компонентов – через m i ; числа грамм-молекул или молей компонентов – через n 1 , n 2 , ..., n i , а их сумму – n i ; объём раствора – через V , объёмы чистых компонентов – через V 1 , V 2 ... V i . Индекс 1 относится к растворителю в тех случаях, если таковым может быть однозначно назван один из компонентов раствора.

Количества веществ относятся к известному количеству раствора.

1. Массовая доля W i масса компонента в единице массы раствора:

(IV, 1а)

Массовый процент Р i – масса компонента в ста единицах массы раствора:

P i = 100W i . (IV, 1б)

2. Мольная доля x число молей компонента в одном моле раствора:

(IV, 1в)

Мольные доли наиболее удобны при теоретическом (термодинамическом) изучении растворов. Из выражения (IV, 1в) видно, что

x i = 1

3. Объемная доля i – объём чистого компонента в единице объёма раствора:

(IV,1г)

4. Мольно-объёмная концентрация – мольность С i – число молей компонента в единице объёма раствора:

(IV,1д)

В том случае, когда единицей объёма раствора является литр, мольно-объемную концентрацию называют молярностью.

5. Мольно-весовое отношение – число молей компонента, приходящееся на известное весовое количество другого компонента, обычно растворителя. Мольно-весовое отношение, выраженное числом молей компонента в 1000 г растворителя, называется моляльностью M i :

(IV, 1е)

Концентрации могут быть выражены также и в других единицах.

Перейти от одних единиц концентрации к другим можно, составив уравнение связи между этими единицами. В случае пересчета объемных единиц концентрации на весовые или мольные и обратно, необходимо знать плотность раствора. Следует помнить, что только в очень разбавленных растворах (т. е. для компонента, количество которого мало по сравнению с другими) концентрации, выраженные в различных единицах, пропорциональны между собой.

§ 2. О молекулярной структуре растворов

Представление о жидкости, как о совершенно аморфной фазе, в которой молекулы расположены хаотически, подобно молекулам газа, в настоящее время оставлено. Исследования по рассеянию света и рентгеновского излучения показали, что жидкости обладают элементами кристаллической структуры (наличием так называемого ближнего порядка в расположении молекул) и в этом отношении являются промежуточным образованием между твёрдыми кристаллами и газами. По мере нагревания жидкости сходство её структуры с кристаллами уменьшается и увеличивается сходство с газами.

Взаимодействие между молекулами в индивидуальных жидкостях является в основном ван-дер-ваальсовым взаимодействием . Под этим названием объединяются несколько типов межмолекулярного притяжения, являющихся частными случаями электростатического взаимодействия. К ним относятся: ориентационное притяжение между молекулами с постоянным диполем, индукционное притяжение между молекулами с постоянным диполем и молекулами с наведенным диполем и дисперсионное притяжение между мгновенными диполями молекул, момент которых колеблется около нуля.

Энергия взаимного притяжения молекул для всех указанных типов взаимо­действия обратно пропорциональна шестой степени расстояния между ними. Указанные взаимодействия в некоторых случаях приводят к ассоциации молекул жидкости (так называемые ассоциированные жидкости). Между молекулами ассоциированной жидкости образуются неустойчивые связи. К таким связям относится водородная связь, которая создается за счет электростатического притяжения протона одной молекулы к аниону или электроотрицательному атому (главным образом, к атомам фтора, кислорода, азота, хлора) другой молекулы.

Притяжению молекул противодействует отталкивание, имеющее значение при малых расстояниях и обусловленное, в основном, взаимодействием электронных оболочек. Это отталкивание в совокупности с тепловым движением уравновешивает притяжение. Таким образом, устанавливаются средние равновесные расстояния между движущимися (колеблющимися, вращающимися и эпизодически перемещающимися) молекулами жидкости.

Термодинамической мерой молекулярного взаимодействия в жидкости в известных границах может служить величина (U / V ) P .

В растворе наряду с взаимодействием между молекулами одного из компонен­тов (однородные молекулы) существует взаимодействие между молекулами разных компонентов (разнородные молекулы). Эти взаимодействия при отсутствии химической реакции, так же как и в чистой жидкости, являются ван-дер-ваальсовыми. Однако молекулы растворенного вещества (второго компонента), изменяя окружение молекулы растворителя (первого компонента), могут существенно изменять интенсивность взаимодействия между молекулами последнего и сами взаимодействовать между собой иначе, чем в чистом втором компоненте. Взаимодействие между разнородными молекулами может следовать иным закономерностям, нежели взаимодействие между однородными молекулами.

Тенденции к ассоциации (соединение однородных молекул) и сольватации (соединение разнородных молекул) являются конкурирующими.

Рассмотрим здесь в качестве примеров диаграммы, изображающие зависимость некоторых свойств бинарных жидких систем от их состава, по которым можно установить наличие химического соединения между компонентами раствора. На рис.4 изображены изотермы теплоты смешения (Q ) компонентов, объёмного сжатия (V ) при смешении и вязкости () растворов пиперидин – аллиловое горчичное масло (C 3 N 5 NCS). Все свойства обнаруживают более или менее резкий излом в максимуме при отношении компонентов 1:1. Точка излома в максимуме, называемая сингулярной точкой, указывает на образование прочного химического соединения, содержащего компоненты в приведённом отношении.

Рис.4. Зависимость некоторых свойств раствора С 3 Н 5 NCS – C 5 H 10 NH от состава.

Таким образом, физико-химический анализ однофазных жидких систем дает в отдельных случаях отчетливые указания на существование определённых химических соединений. Большей же частью, существование определённых соединений в растворе не может быть установлено.

§ 3. О теориях растворов

В течение длительного времени растворение рассматривалось в основном как химический процесс. Этого взгляда придерживался и Д. И. Менделеев, исключавший при этом из рассмотрения смеси жидкостей, близких по своей природе (например, смеси углеводородов). Иной взгляд на процесс растворения развивал один из ярких представителей «физической» теории растворов В. Ф. Алексеев, который изложил (1870 1880) ясную точку зрения на растворение, как на суммарный результат молекулярного движения и взаимного сцепления молекул. Алексеев считал химическое взаимодействие важным, но не обязательным фактором растворения и полемизировал с Менделеевым.

Впоследствии Менделеев признал важную роль физического фактора при образовании растворов, но высказывался против крайнего, чисто физического взгляда на природу растворов. Физическая теория растворов получила особенное развитие после 80 х годов прошлого века в связи с успехами в изучении разбавленных растворов (Вант-Гофф, Аррениус, Оствальд). Была создана первая количественная теория растворов, связанная с представлением о растворенном веществе как о газе, распространяющемся в инертном растворителе. Однако вскоре было обнаружено, что количественная теория Вант-Гоффа – Аррениуса справедлива только для очень разбавленных растворов. Многие факты указывали на взаимодействие компонентов раствора. Все попытки рассмотреть с единой точки зрения растворы любых концентраций приводили к необходимости учета химического фактора.

В последние десятилетия борьба двух точек зрения уступила место признанию важного значения обоих факторов и невозможности их противопоставления. Однако сложность и разнообразие закономерностей, охватывающих свойства растворов различных веществ, делают теорию растворов труднейшей проблемой молекулярной физики и учения о химических связях.

Отклонения от простейших свойств обусловливает, например, полярность молекул. В растворах полярных молекул происходят явления ассоциации и сольватации, в результате которых свойства раствора становятся более сложными. Отклонения свойств раствора от простейших вызываются также химическим взаимодействием компонентов раствора. Оно обычно сопровождается выделением теплоты и уменьшением вероятности перехода в газовую фазу молекул компонента, частично связанных в более сложные соединения.

ГЛАВА V. РАВНОВЕСИЕ: ЖИДКИЙ РАСТВОР – НАСЫЩЕННЫЙ ПАР

§ 1. Давление насыщенного пара бинарных жидких растворов

Газообразная фаза, находящаяся в равновесии с жидким раствором (насыщенный пар), содержит, в общем случае, все компоненты раствора, и давление насыщенного пара, которое также часто называют упругостью пара, является суммой парциальных давлений компонентов 3 . Однако часто отдельные компоненты нелетучи при данной температуре и практически отсутствуют в газообразной фазе.

Суммарное давление насыщенного пара (полное или общее давление) и парциальные давления являются функциями температуры и состава раствора. При постоянной температуре состояние бинарного раствора компонентов А и В определяется одной переменной – концентрацией одного из компонентов.

Удобной мерой концентрации является мольная доля. Будем обозначать мольную долю x 2 второго компонента в растворе через х. Очевидно, мольная доля первого компонента х 1 = 1 – х. Границами изменения х 1 и x 2 являются ноль и единица; следовательно, диаграмма, отображающая зависимость давления пара раствора от его состава (диаграмма давление – состав), имеет конечное протяжение. Один из возможных видов диаграммы P x для раствора двух жидкостей, смешивающихся во всех отношениях (мольная доля х принимает любое значение – от ноля до единицы), изображен на рис.5. Крайними точками кривой P = f (x ) являются давления насыщенного пара чистых жидкостей и. Общее давление пара при любом значении х равно сумме парциальных давлений компонентов: P = P 1 + P 2 .

Состав насыщенного пара определяется мольными долями компонентов в паровой фазе х" 1 и х" 2 ,. По определению парциальных величин (уравнение Дальтона):

x" 1 = x" 2 =

§ 2. Закон Рауля. Идеальные растворы. Предельно разбавленные растворы

В простейшем случае зависимость парциального давления пара растворителя от состава бинарного раствора имеет следующий вид:

Парциальное давление растворителя в паровой фазе пропорционально его мольной доле в растворе.

Рис.5. Общее и парциальные давления пара бинарного раствора: дибромпропан – дибромэтан. Парциальные давления на диаграмме P x изображаются прямыми линиями.

Уравнению (V, 1) можно придать иной вид:

(V, 2)

Относительное понижение парциального давления растворителя в паровой фазе равно мольной доле растворенного вещества (второго компонента) . Уравнения (V, 1) и (V, 2) являются выражениями закона Рауля (1886). Закон Рауля, выраженный в форме уравнения (V, 1), применим к таким растворам, насыщенный пар которых ведет себя как идеальный газ, причем лишь немногие растворы подчиняются с достаточной точностью этому закону, при любых концентрациях (т. е. при значениях x , изменяющихся в интервале от 0 до 1).

Обычно при повышении температуры (пока давление насыщенного пара относительно невелико) отклонения от закона Рауля в форме (V, 1) уменьшаются. Но при достаточно высоких температурах, когда давление насыщенного пара раствора очень велико, уравнение (V, 1) становится неточным, так как возрастают отклонения пара от закона идеальных газов.

Растворы, следующие закону Рауля в форме уравнения (V, 1) при всех концентрациях и всех температурах, называются идеальными (совершенными) растворами, они являются предельным, простейшим типом жидких растворов.

Легко показать, что если для пара растворителя соблюдается уравнение (V, 1), то должно соблюдаться аналогичное уравнение для пара второго, растворённого компонента

(V, 3)

Уравнения (V, 1) и (V, 3) отражают свойства парциальных давлений идеальных растворов при малых давлениях. Совокупность этих уравнений носит название объединенного закона Рауля Генри. В общем виде для многокомпонентного идеального раствора при невысоких давлениях получим:

(V, 4)

Уравнения (V, 1), (V, 3) и (V, 4) будут в дальнейшем изложении служить исходными для изучения термодинамических свойств идеальных растворов при небольших давлениях.

Полное давление пара идеального бинарного раствора, равное

является также линейной функцией мольной доли.

Примерами идеальных растворов (см. рис.5) могут служить смеси: бензол -толуол, бензол – дихлорэтан, гексан – октан и другие.

Составы идеального раствора и его насыщенного пара различны, т. е. х. В данном случае легко найти связь между и х. В самом деле, концентрация второго компонента в паре
. Подставив в это выражение значение P 2 из закона Рауля (уравнение (V, 3)) и значение P из уравнения (V, 5), получим:


(V, 6)

Отсюда видно, что = х только при равенстве давлений насыщенного пара обоих чистых компонентов, т. е. при
.

§ 3. Реальные растворы. Положительные и отрицательные отклонения от закона Рауля

Закон Рауля не выполняется для реальных растворов. Парциальные давления этих растворов больше или меньше давлений паров идеальных растворов. Отклонения от закона Рауля в первом случае называются положительными (общее давление пара больше аддитивной величины), а во втором случае – отрицательными (общее давление пара меньше аддитивной величины).

Примерами растворов с положительными отклонениями от законов Рауля могут служить растворы: ацетон – этиловый спирт, бензол – ацетон, вода – метиловый спирт.

Рис.6. Диаграмма давления пара над раствором С 6 Н 6 – (СН 3) 2 СО.

На рис.6 изображена диаграмма P х для одного из этих растворов (бензол – ацетон).

К растворам с отрицательными отклонениями от законов Рауля относятся, например, растворы: хлороформ – бензол, хлороформ – диэтиловый эфир.

Диаграмма давления пара над раствором хлороформ – диэтиловый эфир показана на рис.7.

Рис.7. Диаграмма давления пара над раствором (С 2 Н 5) 2 О – СНСl 3 .

Величины общего давления P в этих системах изменяются монотонно с изменением величины х. Если отклонения от закона идеальных растворов велики, то кривая общего давления пара проходит через максимум или минимум.

Положительные и отрицательные отклонения реальных растворов от закона Рауля обусловлены разными факторами. Если разнородные молекулы в растворе взаимно притягиваются с меньшей силой, чем однородные, то это облегчит переход молекул из жидкой фазы в газовую фазу (по сравнению с чистыми жидкостями) и будут наблюдаться положительные отклонения от закона Рауля. Усиление взаимного притяжения разнородных молекул в растворе (сольватация, образование водородной связи, образование химического соединения) затрудняет переход молекул в газовую фазу, поэтому будут наблюдаться отрицательные отклонения от закона Рауля.

Следует иметь в виду, что факторы, вызывающие положительные и отрицательные отклонения, могут действовать в растворе одновременно, поэтому наблюдаемые отклонения часто являются результатом наложения противоположных по знаку отклонений. Одновременное действие противоположных факторов особенно наглядно проявляется в растворах, в которых знак отклонений от закона Рауля – Генри изменяется с изменением концентрации.

§ 4. Диаграммы равновесия жидкость – пар в бинарных системах. Первый закон Коновалова. Фракционная перегонка

На рис.5,6,7 общее давление пара бинарного раствора было представлено как функция состава раствора. В качестве аргумента можно также использовать состав пара, определяемый кривыми парциальных давлений и отличающийся от состава жидкого раствора. Таким путем можно получить вторую кривую того же свойства системы – общего давления насыщенного пара раствора в зависимости от другого аргумента – состава пара.

На рис.8 изображена схематическая диаграмма – изотерма равновесия бинарный раствор – пар. Любая точка на плоскости диаграммы характеризует валовый состав системы (координата х ) и давление (координата P ) и называется фигуративной точкой. Верхняя кривая отображает зависимость давления насыщенного пара от состава жидкости, а нижняя кривая – зависимость давления насыщенного пара от состава пара. Этими кривыми плоскость диаграммы разделяется на три поля. Верхнее поле охватывает значения х и P , при которых существует только одна жидкая фаза – раствор переменного состава. Нижнее поле отвечает газовой смеси переменного состава. Любая фигуративная точка в верхнем и нижнем полях изображает состояние одной реально существующей фазы. Поле, заключенное между двумя кривыми, соответствует двухфазной системе. Система, давление и состав которой отображает фигуративная точка, находящаяся в этом поле, состоит из двух фаз – раствора и насыщенного пара. Состав этих фаз определяется координатами точек, лежащих на пересечении изобары, проходящей через фигуративную точку системы, с верхней и нижней кривыми. Например, система, характеризуемая фигуративной точкой k , состоит из двух равновесных фаз, состав которых определяется точками а и b . Точка а, лежащая на нижней кривой, характеризует состав насыщенного пара, а точка b , лежащая на верхней кривой,– состав раствора. Нижняя кривая называется ветвью пара, верхняя кривая – ветвью жидкости.

Рис.8. Диаграмма состав – давление бинарной системы.

При изотермическом сжатии ненасыщенного пара состава х 1 фигуративная точка системы движется вверх по вертикали, конденсация пара начинается в точке а (рис.8) при известном значении давления P . Первые капли жидкости имеют состав х 2 ; образовавшаяся жидкость содержит меньше компонента А, чем конденсирующийся пар.

При изотермическом уменьшении давления жидкость состава х 3 начнет испаряться в точке d , давая пар состава x 4 (точка е); образовавшийся пар содержит больше компонента А, чем испаряющаяся жидкость. Следовательно, в паре всегда преобладает по сравнению с равновесной с ним жидкостью компонент А, прибавление которого к системе, как это видно из диаграммы, увеличивает полное давление пара.

На основании сказанного легко можно сделать следующее заключение: насыщенный пар по сравнению с равновесным раствором относительно богаче тем компонентом, добавление которого к системе повышает полное давление пара. Это – первый закон Коновалова (1881), являющийся справедливым для всех устойчивых растворов.

Рассмотрим явления испарения и конденсации растворов также с помощью изобарной диаграммы температура кипения – состав раствора.

Диаграммы t кип. – х можно построить по экспериментальным данным, или имея ряд изотермических диаграмм P х. На каждой диаграмме P – х, построенной при определенной температуре, находят составы сосуществующих раствора и пара при заданном давлении. По полученным из всех изотерм P – х данным для определенного давления строят одну изобарную диаграмму t кип. – х.

Диаграмма t кип. – х показана схематически на рис.9. Так как компонент А с более высоким давлением насыщенного пара (рис.8) имеет при данном давлении более низкую температуру кипения (), то диаграмма t кип. – х имеет зеркально-подобный вид по отношению к диаграмме P х (имеется только качественное подобие).

Верхнее поле на диаграмме t кип. – х отвечает пару, а нижнее – жидкости. Верхняя кривая – ветвь пара, а нижняя кривая – ветвь жидкости.

Рис.9. Диаграмма температура кипения – состав бинарной системы.

В ректификационных колоннах последовательные перегонки объединены в один автоматизированный процесс, приводящий к разделению компонентов жидкого раствора (ректификация). Промышленное разделение нефти на фракции (первичная переработка нефти) основано на указанном процессе.

В заключение приведем еще одну формулировку первого закона Коновалова:

В насыщенном паре, находящемся в равновесии с жидким бинарным раствором, выше относительное содержание того компонента, который при T = const имеет более высокое значение давления насыщенных паров по сравнению с другим компонентом или при P = const имеет по сравнению с ним более низкую температуру кипения, иначе говоря, пар по сравнению с жидкостью относительно богаче более летучим компонентом.

Раствором называют гомогенную систему, состоящую из нескольких компонентов, т.е. образованную из двух или более индивидуальных веществ. По определению Гиббса: раствор - это фаза переменного состава . Условно состав раствора подразделяют на растворитель (компонент, присутствующий в системе в относительно большем количестве) и растворенное вещество (другие компоненты). Раствор будет идеальным , если образование его не сопровождается уменьшением или увеличением его объема, а также выделением или поглощением тепла. Идеальные растворы подчиняются закону Рауля (см. ниже) при всех концентрациях и всех температурах. Реальные растворы в связи с явлениями ассоциации, диссоциации, сольватации и др. не обладают упомянутыми выше свойствами. Но в состоянии сильного разбавления, а также, если они образованы сходными по химическому составу и физическим свойствам веществами, приближаются к идеальным, поэтому, к ним можно с некоторым приближением применять количественные закономерности, описывающие состояние идеальных растворов.

Здесь рассматриваются только растворы, в которых растворителем является жидкость (чаще всего вода), а растворенными веществами – газы, жидкости или твердые вещества. Состав раствора характеризуется количеством растворенного вещества (веществ) в единице количества раствора или растворителя.

Осмос самопроизвольное движение молекул растворителя через полупроницаемую мембрану, разделяющую растворы разной концентрации, из раствора меньшей концентрации в раствор с более высокой концентрацией, что приводит к разбавлению последнего. В качестве полупроницаемой мембраны, через маленькие отверстия которой могут селективно проходить только небольшие по объему молекулы растворителя и задерживаются крупные или сольватированные молекулы или ионы, часто служит целлофановая пленка – для высокомолекулярных веществ, а для низкомолекулярных – пленка из ферроцианида меди. Процесс переноса растворителя (осмос) можно предотвратить, если на раствор с большей концентрацией оказать внешнее гидростатическое давление (в условиях равновесия это будет так называемое осмотическое давление, обозначаемое буквой p). Для расчета значения p в растворах неэлектролитов используется эмпирическое уравнение Вант-Гоффа:

p = C R T, (4.1)

где С – молярная концентрация вещества, моль/кг;

R – универсальная газовая постоянная, Дж/моль · К.

Величина осмотического давления пропорциональна числу молекул (в общем случае числу частиц) одного или нескольких веществ, растворенных в данном объеме раствора, и не зависит от их природы и природы растворителя. В растворах сильных или слабых электролитов общее число индивидуальных частиц увеличивается вследствие диссоциации молекул, поэтому в уравнение для расчета осмотического давления необходимо вводить соответствующий коэффициент пропорциональности, называемый изотоническим коэффициентом .


p = i C R T, (4.2)

гдеiизотонический коэффициент, рассчитываемый как отношение суммы чисел ионов и непродиссоциировавших молекул электролита к начальному числу молекул этого вещества.

Так, если степень диссоциации электролита, т.е. отношение числа молекул, распавшихся на ионы, к общему числу молекул растворенного вещества, равна a и молекула электролита распадается при этом на n ионов, то изотонический коэффициент рассчитывается следующим образом:

i = 1 + (n – 1)×a, (i > 1). (4.3)

Для сильных электролитов можно принять a = 1, тогда i = n, и коэффициент i (также больше 1) носит название осмотического коэффициента.

Явление осмоса имеет большое значение для растительных и животных организмов, поскольку оболочки их клеток по отношению к растворам многих веществ обладают свойствами полупроницаемой мембраны. В чистой воде клетка сильно набухает, в ряде случаев вплоть до разрыва оболочки, а в растворах с высокой концентрацией солей, наоборот, уменьшается в размерах и сморщивается из-за большой потери воды. Поэтому при консервировании пищевых продуктов к ним добавляется большое количество соли или сахара. Клетки микроорганизмов в таких условиях теряют значительное количество воды и гибнут.

Осмотическое давление обеспечивает движение воды в растениях за счет различия осмотических давлений между клеточным соком корней растений (5-20 бар) и почвенным раствором, дополнительно разбавляемом при поливе. Осмотическое давление обусловливает в растении подъем воды от корней до вершины. Таким образом, клетки листьев, теряя воду, осмотически всасывают ее из клеток стебля, а последние берут ее из клеток корня.

Растворимость газов в жидкостях изменяется в широких пределах и зависит не только от природы газа и растворителя, но и от давления и температуры. Количество растворенного газа пропорционально давлению его паров над раствором (закон Генри ). Растворимость газов уменьшается при увеличении температуры и присутствии в растворе других веществ.

Равновесие между жидкостью и паром является динамическим – между ними происходит непрерывный обмен молекулами (частицами), причем количество этих молекул, проходящих через единицу поверхности раздела обеих фаз в условиях равновесия, одинаково (в обоих направлениях).

Согласно закону Рауля относительное понижение давления пара растворителя (А) над раствором зависит только от мольной доли растворенного в жидкости вещества (В), то есть определяется числом частиц вещества В в единице объема, но не зависит от свойств растворенного вещества:

где N В – мольная доля вещества В в растворе, определяемая по формуле

, (4.5)

где n – количество моль вещества;

– давление насыщенного пара над чистым растворителем;

Р А – давление пара растворителя над раствором (при той же температуре).

Закон Рауля выполняется для идеальных и сильно разбавленных растворов.

Р А = (при Т = const), (4.6)

где N A – мольная доля вещества А в растворе, определяемая по формуле

. (4.7)

Приведенное уравнение (4.6) показывает,что давление пара растворителя над реальным раствором прямо пропорционально мольной доле растворителя в этом растворе.

При решении задач, связанных с испарением конденсированной фазы чистого вещества, можно использовать следующее уравнение:

(4.8)

где Р 1 и Р 2 – давление паров при абсолютных температурах Т 1 и Т 2 соответственно;

– мольная теплота испарения (парообразования), считающаяся постоянной в данном температурном интервале;

R – универсальная газовая постоянная.

Жидкость кипит при той температуре, при которой давление насыщенного пара над ней достигает внешнего давления. С ростом в ней концентрации растворенного нелетучего вещества давление пара растворителя над раствором понижается и раствор кипит при более высокой температуре, чем чистый растворитель. Повышение (изменение) температуры кипения от Т 0 для чистого растворителя до Т для разбавленных растворов рассчитывают с помощью следующего уравнения:

DТ кип = Т – Т о = К э ·С m ,в,(4.9)

где DТ кип – повышение температуры кипения раствора, К;

К э – эбулиоскопический коэффициент, К · кг · моль – 1 ;

Из уравнения (4.9) видно, что К э = DТ кип. при С m , В = 1 моль/ кг. Повышение температуры кипения зависит от концентрации раствора, т.е. от числа частиц в единице объема, но не зависит от типа и свойств этих частиц.

Эбулиоскопический коэффициент зависит только от природы растворителя и определяется следующим образом:

, (4.10)

где М А – молярная масса растворителя; г/моль;

DН исп – мольная теплота испарения чистого растворителя.

Поскольку , (4.11)

m A – масса растворителя, г,

то уравнение (4.9) с учетом уравнения (4.11) можно записать:

. (4.12)

Полученное уравнение (4.12) можно использовать для определения неизвестной молярной массы растворенного вещества В по экспериментально найденному значению DТ кип.

Для расчетов повышения температуры кипения растворов слабых или сильных электролитов необходимо использовать понятие об изотоническом коэффициенте i, приведенном в разделе об осмотическом давлении (см. уравнение 4.3). Тогда уравнение (4.9) принимает следующий вид:

DТ кип = К Э · i · С m , В. (4.13)

Растворы замерзают при более низкой температуре, чем чистый растворитель, что является следствием понижения давления пара растворителя над раствором. Для разбавленных растворов понижение температуры замерзания от Т 0 для чистого растворителя до Т для раствора зависит от количественного состава раствора:

DТ зам = Т 0 – Т = К к · С m , В, (4.14)

где DТ зам – понижение температуры замерзания раствора, К;

К к – криоскопический коэффициент, К · кг · моль – 1 ;

С m , В – моляльная концентрация вещества В, моль/кг.

Из уравнения (4.14) следует, что DТ зам = К к при С m , В = 1 моль/кг и понижение температуры замерзания раствора определяется только числом частиц в единице его объема, но не зависит от природы этих частиц.

,(4.15)

где М А – молярная масса растворителя А, г/моль;

DН пл – мольная теплота плавления чистого растворителя.

Если в массе растворителя m А находится масса растворенного вещества В, то

,(4.16)

где m B – масса растворенного вещества В, г;

М В – молярная масса растворенного вещества В, г/моль;

m A – масса растворителя, г.

Тогда уравнение (4.14) можно записать:

 (4.17)

Уравнение (4.17) можно использовать при экспериментальном определении и расчете молярной массы неизвестного вещества по понижению температуры замерзания его раствора в известном растворителе.

Если растворенное вещество распадается в растворе на ионы, то увеличение числа частиц за счет диссоциации его молекул учитывается через введение изотонического коэффициента i (см. уравнение 4.3):

DТ зам = К к · i · С m , В. (4.18)

Пример

Водный раствор спирта, содержащий 0,17 г спирта и 20 г воды, замерзает при температуре – 0,354 0 С. Рассчитать молярную массу спирта, если криоскопический коэффициент для воды равен 1,86 о С · кг · моль –1 .

Решение

Для решения воспользуемся уравнением (1.60):

Ответ . М сп = 46 г/моль.

Первый закон Коновалова (применим как для идеальных, так и для отклоняющихся от закона Рауля растворов): насыщенный пар над равновесным ему раствором из двух жидкостей относительно богаче тем компонентом, добавление которого к системе повышает общее давление пара (или снижает температуру кипения). Поэтому при испарении раствора пар обогащен более летучим компонентом, а жидкость – менее летучим. На различиях в составах раствора и равновесного с ним пара основан метод разделения смесей (в основном органических жидкостей) путем ректификации. Повторяя операции испарения – конденсации, можно получить чистые компоненты. На практике это реализуется в ректификационных колонках.

Для растворов, значительно отклоняющихся от закона Рауля, на кривых зависимости давления пара над раствором от состава раствора часто имеется точка максимума или минимума. В экстремальных точках состав пара совпадает с составом жидкости (второй закон Коновалова). Такие смеси называются азеотропными, разделить их перегонкой (ректификацией) нельзя.

Для сильно различающихся по своей природе и по этой причине практически не смешивающихся жидкостей давление пара каждого компонента над смесью равно давлению пара чистого компонента. Тогда полное давление пара равно сумме давлений насыщенного пара обоих компонентов в чистом состоянии (при этой же температуре):

Р = Р А + Р В. (4.19)

Однако температура кипения такой смеси ниже температур кипения каждой из индивидуальных жидкостей. Это свойство используется для перегонки с водяным паром путем барботирования его через не смешивающуюся с водой жидкость с последующей конденсацией выходящих паров. Перегонка с водяным паром позволяет отгонять высококипящие жидкости при температуре ниже 100 о С.

Концентрация - величина, характеризующая количественный состав раствора.

Концентрацией растворённого вещества называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л), то есть это соотношение неоднородных величин.

Те величины, которые являются отношением однотипных величин (отношение массы растворённого вещества к массе раствора, отношение объёма растворённого вещества к объёму раствора) правильно называть долями. Однако на практике для обоих видов выражения состава применяют термин концентрация и говорят о концентрации растворов.

Раствор - представляет собой однородную гомогенную систему, состоящую из двух и более веществ, одно из которых является растворителем, а другое – растворенным веществом. Раствор может быть насыщенным, т.е. содержать предельное количество растворенного вещества и находиться в состоянии подвижного равновесия.

Массовые доли – отношение массы растворенного вещества к массе раствора (если в процентах, то ∙ 100%).

Молярная концентрация – С М – число молей растворенного вещества в 1 литре раствора.

где V – объем (если в задаче не указан объем, то имеется в виду, что он равен 1 литру), М – молярная масса.

Нормальность (нормальная концентрация) - С н - число эквивалентов растворенного вещества, содержащихся в 1 литре раствора.

С н = , где 1экв. – эквивалент вещества (m э)

Эквивалентом вещества называется такое его количество, которое соединяется с 1 молем атома водорода или замещает такое его количество в химических реакциях; определенное количество граммов какого-либо вещества, численно равное его эквиваленту.

Эквивалентная масса = масса одного эквивалента.

Эквивалент вычисляется:

а) эквивалент кислоты равен её молярной массе, деленной на основность (число ионов водорода) кислоты.

б) эквивалент основания равен его молярной массе, деленной на кислотность (число гидроксильных групп) основания.

в) эквивалент соли равен её молярной массе, деленной на сумму зарядов образующих её катионов или анионов.

Закон эквивалента: все вещества взаимодействуют между собой в эквивалентных количествах.

Для веществ;

С м1 ∙ V 1 = C n 2 ∙ V 2 для растворов;

Титр – масса вещества в 1 литре раствора.

Титр = =

Вспомним так же формулу:

m раствора = ρ ∙ V, где ρ – плотность вещества.


ρ(р-ра)=1,33г/мл

() =49%, или 0,49

Найти: C() Решение:

1. Чтобы перейти от массовой доли к молярной концентрации, надо рассчитать какую массу имеют 1000 мл раствора:

2. Вычислим массу в этом растворе:

3. Найдём сколько моль содержится в 651,7г:

4. Найдём молярную концентрацию ортофосфорной кислоты в растворе:


5. Найдем эквивалентную концентрацию ортофосфорной кислоты в растворе:

По формуле:

≈ 20 моль/л Ответ: () = 6,65 моль/л

() ≈ 20моль/л 4) Коллоидные растворы.

Коллоидные растворы – это высокодисперсные системы, где твердые частицы дисперсной фазы равномерно распределены в жидкой дисперсионной среде.

Строение коллоидных частиц (на примере AgI) – оно объясняет тот факт, что нерастворимое вещество, т.е. осадок, равномерно распределяется во всем объеме.

Обязательным условием получения коллоидного раствора является избыток одного из реагирующих веществ.

– ядро коллоидной частицы – ядром мицеллы всегда является нерастворимое соединение.

Потенциалопределяющие ионы – адсорбируются на поверхности ядра (ионы того вещества, которые находятся в избытке).

(Ag + + NO 3 -) – адсорбционный слой – это изменение концентрации вещества на границе раздела фаз.

NO 3 - – противо-ионы – заполняют противоионный и диффузный (подвижный) слои.

Мицелла электронейтральна, а твердая фаза всегда заряжена (ее заряд определяется по заряду потенциалопределяющих ионов).

Золи (нем. sole от лат. solutio - раствор) - это ультрамикрогетерогенные дисперсные системы, размер частиц которых лежит в пределе от 1 до 100 нм (10 −9 -10 −7 м).

В зависимости от дисперсионной среды золи бывают твердыми, аэрозолями (газообразная дисперсионная среда) и лиозолями (жидкая дисперсионная среда). В зависимости от природы среды лиозоли называют гидрозолями (вода), органозолями (органическая среда) или, более конкретно, алкозолями (спирты), этерозолями жиры и др. 3оли занимают промежуточное положение между истинными растворами и грубодисперсными системами (суспензиями, эмульсиями). Золи диффундируют медленнее, чем неорганические соли, обладают эффектом светорассеяния (Эффект Тиндаля).

Ni(OH – ядро коллоидной частицы

Потенциалопределяющие ионы

( + ) – адсорбционный слой

– противо-ионы

Ni(OH + + - твердая фаза

– диффузный слой 5) Реферат. Химия в строительстве.

Поделиться